Stereoselective Synthesis of Trisubstituted Z- or E-Olefins Employing N-Substituted β -Methallyldimethylammonium Ylides

Kiyoshi Honda, Seiichi Inoue,* and Kikumasa Sato[†]

Department of Synthetic Chemistry, Faculty of Engineering, Yokohama National University, Tokiwadai, Hodogayaku, Yokohama 240, Japan

Received August 22, 1991

Summary: [2,3] Sigmatropic rearrangement of N-substituted β -methallyldimethylammonium ylides forms trisubstituted olefins with high stereoselectivity. Ylides with a powerful electron-withdrawing substituent (-COCH₃ or -CO₂Et) in the α -position and those with a vinyl group carrying an ester moiety at the β -position afford exclusively *E*- and *Z*-olefins, respectively.

Examination of the five-membered envelope conformation of transition state for the concerted [2,3] sigmatropic rearrangement suggests that an R¹ substituent on the α -carbon atom should prefer the equatorial position, leading almost exclusively to the *E* configuration of the newly created double bond (Scheme I). Many examples are found in Wittig,¹ Büchi,² sulfoxide,³ sulfinate,⁴ sulfenate,⁵ sulfide,⁶ sulfonium ylide,⁷ phosphite,⁸ and Meisenheimer⁹ rearrangements.

One of the rare exceptions to this generalization was reported by Still in the Wittig rearrangement of anions derived from stannylmethyl ethers, which afforded Zhomoallyl alcohols as the major products.¹⁰

We recently reported a [2,3] sigmatropic rearrangement of nitrogen ylides that provided Z- or E-homoallylic dimethylamines with high stereoselectivity.¹¹ In the formation of β -methallyltrimethylammonium salts, two types of ylides are possible, one by removing a proton from a methyl group and the other by deprotonation at the allylic position. The ylide generated by the latter process leads to a Z-olefin after rearrangement, whereas the methylene ylide leads to an E-olefin.¹¹

We wish to report another new stereoselective synthesis of Z- or E-trisubstituted olefins employing N-substituted β -methallyldimethylammonium ylides (Scheme II).

Table I shows the reaction of ammonium salts 1a-1f. Treatment of 1a (1 mmol) with potassium *tert*-butoxide (2 mmol) in DMF resulted in the presumed formation of ammonium ylide intermediate 2a followed by spontaneous [2,3] sigmatropic rearrangement (2 h, -50 °C) to give *E*ester 3a in 84% yield with 100% stereoselectivity (run 2). Similarly, the reaction of 1b with potassium *tert*-butoxide in DMF at -10 °C afforded *E*-ester 3b exclusively in 81% yield (run 3).

Interestingly, treatment of 1c (1 mmol) with potassium *tert*-butoxide (2 mmol) in DMF at -50 °C resulted in a 90:10 mixture of (Z)-3c and (E)-3c, without isomerization of the parent crotyl E double bond. Furthermore, higher solvent polarity and lower temperature increased the Z selectivity of the rearrangement (run 6). Similar results were obtained in the reaction of salts 1d-1f (runs 7-9).

In the rearrangement of (ethoxycarbonyl)methyl- or acetonyl-substituted ammonium salts 1a,b,d,e, stable ylides 2 may undergo [2,3] sigmatropic rearrangement to E-olefins via the usual concerted transition state of a doubly suprafacial mode,^{9,13} in which RCH₂ on the allyl moiety takes a pseudoequatorial conformation.

Table I. Reaction of N-Substituted β -Methallyldimethylammonium Salts

run	sub- strate	base	solvent	temp ^a (°C)	yield (%)	$Z:E^{b,c}$
1	1 a	KO ^t Bu	THF	-10	80	5:95
2	1a	KO ^t Bu	DMF	-50	84	0:100
3	1b	KO [‡] Bu	DMF	-10	81	0:100
4	1 b	K ₂ CO ₃	DMF	0 ^d	71	0:100
5	1c	KÖ ^t Bu	DMF	-50	72	90:10
6	1c	KO ^t Bu	THF-HMPA ^e	-70	76	100:0
7	1 d	KO ^t Bu	DMF	-50	73	0:100
8	1e	KO ^t Bu	DMF	-10	72	0:100
9	1 f	KO ^t Bu	THF-HMPA ^e	-70	64	95:5

^a Unless otherwise noted, the reaction time was 2 h. ^b The ratio of Z/E was determined by capillary GC analysis. ^c Each of these compounds was separated carefully by column chromatography on silica gel and analyzed by NMR spectroscopy.¹² ^d The reaction time was 6 h. ^eHMPA content was 20 vol %.

In order to establish which of the alternative routes (Scheme III) is followed in the Z-selective rearrangement

[†]Professor Emeritus, Yokohama National University. Present address: President, Tokyo Technical College, Higashi 1-chome, Kunitachi, Tokyo 186.

^{(1) (}a) Nakai, T.; Mikami, K.; Taya, S.; Kimura, Y.; Mimura, T. Tetrahedron Lett. 1981, 22, 69. (b) Nakai, T.; Mikami, K.; Taya, S.; Fujita, Y. J. Am. Chem. Soc. 1981, 103, 6492. (c) Rautenstrauch, V. J. Chem. Soc. D 1970, 4, (d) Scholkopf, U.; Fellenberger, K. Liebigs Ann. Chem. 1966, 698, 80.

^{(2) (}a) Büchi, G.; Cushman, M.; Wüest, H. J. Am. Chem. Soc. 1974, 96, 5563. (b) Chen, K.-K.; Saucy, G. J. Org. Chem. 1977, 42, 3828.

of bisallylic systems 1c and 1f, deuterio ammonium salt 4c (96 \pm 4% D) was synthesized and treated with potassium tert-butoxide in THF-HMPA at -70 °C. The deuterium content of Z-ester 3c was determined to be 96 \pm 4% D by ¹H NMR after purification by column chromatography. This result rules out allylide 5 as an intermediate and establishes the direct formation of methylide 6. Therefore the Z-selective character of the present system is in marked contrast to our previous system¹¹ from a mechanistic standpoint.

The [2,3] sigmatropic rearrangement of 1c,f seems to have an earlier (i.e., reactant-like) transition state than that of the stable ylides 2a,b,d,e. Thus another envelope con-

59

(5) Bickart, P.; Carson, F. W.; Jacobus, J.; Miller, E. G.; Mislow, K. J. Am. Chem. Soc. 1968, 90, 4869.
(6) Snider, B. B.; Hrib, N. J.; Fuzesi, L. J. Am. Chem. Soc. 1976, 98,

7115.

(7) Grieco, P. A.; Boxler, D.; Hiroi, K. J. Org. Chem. 1973, 38, 2572. (a) Macomber, R. S. J. Am. Chem. Soc. 1977, 99, 3072.
(9) (a) Yamamoto, Y.; Oda, J.; Inouye, Y. J. Org. Chem. 1976, 41, 303;

J. Chem. Soc., Chem. Commun. 1973, 848. (b) Inoue, S.; Iwase, N.; Miyamoto, O.; Sato, K. Chem. Lett. 1986, 2035. Sato, K.; Miyamoto, O.;

Inoue, S.; Iwase, N.; Honda, K. Bull. Chem. Soc. Jpn. 1990, 63, 1328.
 (10) Still, W. C.; Mitra, A. J. Am. Chem. Soc. 1978, 100, 1927.
 (11) Honda, K.; Inoue, S.; Sato, K. J. Am. Chem. Soc. 1990, 112, 1999.

(12) The stereochemistry of the rearrangement products was con-firmed by ¹H and ¹³C NMR (CDCl₃) as follows: (*E*)-**3a**, δ 1.64 (CH₃, s), 15.9; (*Z*)-**3a**, δ 1.72 (CH₃, s), 23.0; (*E*)-**3b**, δ 1.62 (CH₃, s), 16.0; (*Z*)-**3c**, δ 1.69 (CH₃, s), 23.8; (*E*)-**3c**, δ 1.59 (CH₃, s), 15.8; (*E*)-**3d**, δ 1.63 (CH₃, s), 15.9; (*E*)-**3e**, δ 1.61 (CH₃, s), 15.9; (*Z*)-**3f**, δ 1.67 (CH₃, s), 23.8; (*E*)-**3f**, δ 1.58 (CH₃, s), 16.1.

(13) (a) Baldwin, J. E.; Patrick, J. E. J. Am. Chem. Soc. 1971, 93, 3556. (b) Evans, D. A.; Andrews, G. C. J. Am. Chem. Soc. 1972, 94, 3672.

formation can be postulated as a plausible transition state leading to Z-olefins (Scheme IV).

The conformational preference of I over II may result from vicinal repulsion between RCH₂ and the vinyl methyl group, which Still postulated to be an important factor in the Z-selective Wittig rearrangement.^{10,14}

(14) Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1979, 18, 563.

Antineoplastic Agents. 214. Isolation and Structure of Cephalostatins 7–9^{la}

George R. Pettit,* Yoshiaki Kamano, Masuo Inoue, Claude Dufresne, Michael R. Boyd,^{1b} Cherry L. Herald, Jean M. Schmidt, Dennis L. Doubek, and Nigel D. Christie

Cancer Research Institute and Department of Chemistry, Arizona State University, Tempe, Arizona 85287-1604

Received June 27, 1991

Summary: The Southern Indian Ocean marine worm Cephalodiscus gilchristi has been found to yield new cephalostatins 7-9.

Tube-inhabiting marine animals of the genus Cephalodiscus (one of two divisions in the class Pterobranchia, Hemichordata Phylum) are rarely encountered. Only some 18 species are presently known^{2,3} and confined primarily to Antarctica.⁴ One Southern Hemisphere temperate region species Cephalodiscus gilchristi was recorded⁵ off

the coast of South Africa in 1906 and described in more detail in 1915–17.⁶ In 1988 we summarized results from the first chemical study of this genus and isolation of the powerful (P388 ED₅₀ 10^{-7} – $10^{-9} \mu g/mL$) cell growth inhibitor cephalostatin 1 (1)⁷ from C. gilchristi. Subsequently we described cephalostatins $2-4^8$ and $5-6^9$ where introduction of an aromatic C'-ring (cf. 2 corresponding to cephalostatin 6) was found to greatly reduce (P388 ED_{50} $\sim 10^{-2} \,\mu g/mL$) the cytostatic activity. We now report that further detailed investigation of C. gilchristi antineoplastic

^{(3) (}a) Blackburn, G. M.; Ollis, W. D.; Plackett, J. D.; Smith, C.; (a) Blackbirth, G. M., Ohls, W. D., Flackett, J. D., Shirth, C.,
 Sutherland, I. O. J. Chem. Soc., Chem. Commun. 1968, 186. (b) Baldwin,
 J. E.; Hackler, R. E.; Kelly, D. P. Ibid. 1968, 537, 538. (c) Evans, D. A.;
 Andrews, G. C.; Sims, C. L. J. Am. Chem. Soc. 1971, 93, 4956. (d) Evans,
 D. A.; Andrews, G. C.; Fujimoto, T. T.; Wells, D. Tetrahedron Lett. 1973, 1385, 1389. (e) Grieco, P. A. J. Chem. Soc., Chem. Commun. 1972, 702. (f) Grieco, P. A.; Finkelforn, R. S. J. Org. Chem. 1973, 38, 2245.
 (4) Cope, A. C.; Morrison, D. E.; Field, L. J. Am. Chem. Soc. 1950, 72,

^{(1) (}a) For series part 213 refer to: Bai, R.; Pettit, G. R.; Hamel, E. J. Biol. Chem. 1990, 265, 17141. (b) NCI Frederick Cancer Research and Development Center, Frederick, MD 21702

⁽²⁾ Bayer, F. M. Bull. Inst. Mar. Sci. Gulf Caribbean 1962, 12(2), 306 - 312.

⁽³⁾ Markham, J. C. Antarctic Research Services; Llano, G. A., Wallen, E., Eds.; University of Miami: Miami, FL, 1971; Vol. 17, p 83. (4) The first recognized species (C. nigrescens) of this genus was

collected during expeditions of the Erebus and Terror in 1841-2: Ridewood, W. C. Ann. Mag. Nat. Hist. 1912, 10(8) (Art. 45), 550-555.

⁽⁵⁾ C. gilchristi was recognized as a new species by: Ridewood, W. C. Mar. Invest. 1906, 4, 173-192.

^{(6) (}a) Gilchrist, J. D. F. Ann. Mag. Nat. Hist. 1915, 16(8) (Art. 30),
233-243. (b) Gilchrist, J. D. F. Q. Jl. Microsc. Sci. 1917, 62, 189-211.
(7) Pettit, G. R.; Inoue, M.; Kamano, Y.; Herald, D. L.; Arm, C.; Du-

fresne, C.; Christie, N. D.; Schmidt, J. M.; Doubek, D. L.; Krupa, T. S. J. Am. Chem. Soc. 1988, 110, 2006.

⁽⁸⁾ Pettit, G. R.; Inoue, M.; Kamano, Y.; Dufresne, C.; Christie, N.;
Niven, M. L.; Herald, D. L. J. Chem. Soc., Chem. Commun. 1988, 865.
(9) Pettit, G. R.; Kamano, Y.; Dufresne, C.; Inoue, M.; Christie, N.;
Schmidt, J. M.; Doubek, D. L. Can. J. Chem. 1989, 1509.